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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1918

ON ISOMETRIC DEFORMATION OF SCREW SURFACES
By

G, W. Schindler

SUMMARY ) 2
j5313

A study of strain-free deformation mechanisms of surfaces that are
capable of folding into a flat annular disk of vanishing engulfed volume is pre-

sented. The approach used follows a technique of isometric mapping.

INTRODUCTION

The use of packageable and deployable structural devices is of interest
for a variety of space applications where relatively large surfaces and/or en-
closed volumes are required, but where payload size limitations in available
boosters prevent their egress from terrestrial atmosphere in expanded con-
dition. Another source of interest for foldable structural devices rests in the
need for containers of variable volume which are useful for expulsion of lig-
uids, particularly of rocket propellants. In either case, reduction of en-

closed volume, frontal area, and package size to a minimum is desired.

The problem of finding specific, packageable surfaces has been ap -
proached by defining a particular surface in a folded, packaged configuration
and, then, by defining possible strain-free expanded geometrical configura-
tions of the same surface for which continuous and topologically permissible
isometric transformations exist. Thus, the problem of foldability has been

inverted by defining the original surface in the desirable, folded configuration

first, and then by generating geometrical shapes that can conform to the de-

sired pattern (reference 1).



SYMBOLS
c constant
ds line element
f radius vector function at original surface
n integer
P,q. T, 8 deformation parameters
S surface
w auxiliary function
X, Y, 2 Euclidian coordinates
o,B,y functions describing deformed surfaces
E, [{s) surface parameters

Plain subscripts refer to partial derivatives, subscripts in parentheses
indicate the variable of the function, superscript stars indicate functions re-

ferring to the deformed surface.

ANALYSIS

A surface S which can be deformed by bending without stretching, com-
pressing, or tearing, is said to permit an isometric deformation. The neces-
sary and sufficient condition for an isometric deformation is that the line ele-

ment of S remains unchanged during the deformation process.

It is known that, apart from the group of rigid displacements relative to
the Euclidian space, certain surfaces, including sphere and torus, cannot be
deformed isometrically without violating some differentiability conditions on
the radius vector describing the surface (reference 2). In loosening these
constraints and admitting a certain folding mechanism, however, the class of
possible isometric deformations of a given surface can be extended consider-
ably. This class may cover the solution to the problem where the volume

enclosed or engulfed by the deformed surface is as small as desired.



Let (x,y, z) denote an Euclidian system of coordinates. Consider the

surface S described by the parameter equations

x O Xg ) T fgycose
y = y(g,‘p) = f(g) sin»qo (1)
z 2(&,0) 0

where § and @ are the surface parameters., The function f(ﬁ) is assumed to
be a continuous, piecewise, differentiable and non-negative function of 13
within the interval go <t s €N , Eo < gN , which vanishes identically outside
this interval. The surface S is a planar rotational surface generated by a
straight line which covers once or several times certain parts of the positive
x-axis , according to the particular choice of f(ﬁ) . If it is further assumed
that none of the meridians ¢ and ® + 2fn , n=90, 1, ... , coincide, then S
represents a winding surface with zero advancing rate in z-direction. The
volume engulfed by S is apparently zero. A realization of this type of sur-

face is shown in figure 1.

The line element of S is given by the first fundamental form (refer-
ences 2 and 3)

2 2

a2 2 2
ds” = g a8 4+ £y de (2)

where f' denotes the derivative %fé .

It is useful to choose the parameter £ as the arc length of the merid-
ians ¢ = Constant . From equation (1) it follows then that fzg) = %1 for this

case. The function f(g) can be defined more precisely as follows:

c, + sign(Aﬁi) - &€ for €i_15§‘§i
fey - i=1,2, ..., N (3)
0 for £€<§ ,E>¢&
o N



Here, Ei denote those points of the interval Eo ££ s €N where the derivative
ig) is discontinuous; the values of €i may satisfy the inequality

<t <t <...< < i i
£o €1 €2 €N_1 £N . sign (Agi) stands for plus or minus one,

and AEi = Ei - €i_1 . Since fﬁ) is continuous, the constants c, are subject

(

to the conditions
c, ¥ s1gn(A£i) . Ei = cy t s1gn(A€i+l) . €i ,i=1,2, ..., N-1 (4)

%
Consider now another surface S described by

%
x x
(6,0 p,q, ...)
= v (5)
Y T Y eipaq )
z = z
(g’(p: P> g, "')
* * %
where the functions x , y , and z depend not only on the variables §
and @ , but also on some additional deformation parameters p,q,... . The

line element of S is given by

>',<2 :{:2 *2 3 2 2 sk B b3 sk sk S
d = + + dé¢” + + + dé d
s (x€ Ve 2y ) dé 2(x£ X Ve Yo 2 z‘p) € do
(6)
*2 *2 73 2
+ + + d
(x(p Yo 2 ) do

The subscripts indicate the partial derivatives of the coordinates x, y, z with

respect to the indicated parameters € and ¢ .

The surface S 1is isometric to the surface S if the line elements dsz

%
and ds 2 are identical, that is if

*2 *2 #2 2
+ + f! 1
¢ Ve g (£)
k3 + sk + z‘i sk a 0 > (7)
X VA =
t¥0 T Ve Yo £ %o
7 #2 ) 2
+ + = f
x‘P Y‘P Z(D (§) /



The second equation of equations (7) is a result of the orthogonality of the

parameter lines ¢ = Constant and € = Constant .

£
The surface S is obtained by an isometric deformation of the surface
S if equations (7) are satisfied, and a set of parameter values P9y o

exists such that the equations

%

= , \
* (gl ®; Po: qO: O] ) f(&) cos ¢
y* = f sin ¢ > (8)
(€.@:pa, o) 6
sk - 0 y

z
(gx(p: Po: qo.v .. -)

hold. The problem of finding isometric deformations of the given surface S
is thus reduced to solving the system of partial differential equations (7) and
satisfying equations (8).

SOLUTIONS

A class of isometric deformations of the original surface S is obtained

by letting
x* = a(g) cos pp + B(é,‘) sin pe
‘.Y* = a(g) sin py - ﬁ(g) cos pe (9)
-

Vg tae

with the "twist' and '""stretch'' deformation parameters p and q respectively,
and with still arbitrary functions &, B , and ¥ , which depend on § only.

The line element is given by
as’? = (@®+ g% sy?yag? + 20pBar - af') + qv']dg do
) (10)
+ [p20® + 8% +q% ) do



The functions Ot(e) , B(ﬁ) , and 7(5) have to satisfy the conditions for

isometry

2 2 2 _ 2 \
% By e T e

PBe) %t Y% B tave 0 ) (11)

2

2, 2 2 2
Py * By ta 3 )

Solutions of equations (11) can be obtained by letting

1 f 2 cos W
P q
(12)
2 2 .
f -q sinw

B

o |~

with the generating function W(ﬁ) . These forms for & and B satisfy appar-

ently the third equation of equations (11). Differentiation leads to

\
1
o = 1 ——i—cosw - w'\/fz-qz sin w
P 2 2
f -gq >
(13)
1
B = LA & S sinw + w'\/fz-qz cos w
P 2 2 )
f -q

Equations (12) and (13) are now to be inserted into the second equation
of equations (11) and furnish
1 2 2
Yy = — < (f-q) * w (14)
Pq
Inserting equations (13) and (14) into the first equation of equations
(11) results in
1
= + —— (" -q) w = f' (15a)
p Lf -gq Pq



or, after solving for w'™ ,

9 L P L (15b)

Integration yields

f_\/
2 2 2 2
(p  -1)f - pgqg

£(£2 - 9%

daf + r (16)

'.'_
L0
—

V(g)

where r is an integration constant representing a rigid body rotation of the

surface around the z-axis.

Inserting expressions (15a) into (14), it follows after integration

df + s (17)

f
2 2 2 2
y - ilf\Ap-l)f - p’q
(§) p f
f
o
where s is also an integration constant representing a rigid body transla-

tion of the surface along the z-axis.

The surface S represented by equations (9) is now given by the

parameter representation

— f -
2 2 2 2
E 1 - -
x = = fz-gz'cos p(p:tqf \/(p 12)f2 P9 4f-r
P ! £(£° - q°) J
f
[0}
i £ \/2 2 2 2 ]
1 -1 -
y = ; fz-qz *  sin pY = qj (P Z)f > P9 df - r >(18)
L fli  -q) J
f
(o)
f-\/2 2 2 2
: 1 - -
2 =*_[ e P9 4t +q -0+ s
P f
f
o]




Letting here p=1, g=r =5 =0, the original surface S is obtained.
Hence, the four-parametric family of surfaces S results from isometric

deformations of S .

DISCUSSION
In discussing the surfaces S" , it is observed that the lines § = Constant
(which include f = Constant) are spirals advancing in z-direction with constant

advancing rate q. Their projections into the x, y-plane are circles of radius

1._ /
p(g) = E f(zg) - q2 . Hence, these curves lie on circular cylinders of radius

o(g) Another special feature results from the fact that either the upper or
the lower sign of the integrals in equations (18) may be chosen. If f(&) is a
continuous piecewise differentiable function of £ as considered earlier, with

derivatives f(g) = +1 for €0 <¢ 50',"1 , (€) -1 for 5 < § 5€ , then

+d€ for go s £ < El
daf = (19)
-d§ for §l < § = £2

Since f(ﬁ) is positive within the entire interval €o £ = €2 , the sign of
the integrals may be chosen in such a manner that *df = -d§ for all £ . Let-~

ting f =f and f =f{_, the z- onent in equations (18 b it-
g (€ ) o n (52) 5 z-component in eq ons (18) can be wri
ten in the form

\/‘P "D g - pa”
d§+q'(p+s (20)

fe)

From this equation it can be deduced that the lines & = € and § = § may co-
incide by choosing the parameters p and q properly More prec1se1y, the

points of the space curves z = z(é ) and z = may coincide. The

(€ , 0+ 2m)

condition for that is



L)

5
Vi) - o
d§ = 2mgq (21)
£

o

A realization of such a surface is shown in figure 2. This surface has the
topological character of a cylinder, and can maintain this character through-
out the deformation process. This requires, however, that a relative sliding
motion of the joint § = 60 = £ can occur.

2

It should be noted that the surface S is real only if the radicand

(pz -1 f(zg) - quZ is non-negative. Let f = f  be the minimum of f with-
(€)
in the interval €0 s § SEZ . The reality condition, then, is
2 2 2 2 .
(p~-1)f¢ - pg =0 (22)

It results that the '"twist parameter p'' has to be greater than or equal to
unity:

pz s 1 (23)

and the advancing rate q is restricted by

2 ~ sk
Osq25<u)‘.f2 (24)
2
p
Finally, it will be observed that isometric surfaces of forms other than those
given by equations (9) are possible. A realization of such a surface in which

the advance rate is not constant is shown in figure 3.

Astro Research Corporation
Santa Barbara, California
August 29, 1962
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Figure 1. = Folded Configuration of Two-Leaved Screw Surface.
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